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As a means of analysing the stability of the wake behind a multi-bladed rotor the
stability of a multiplicity of helical vortices embedded in an assigned flow field is
addressed. In the model the tip vortices in the far wake are approximated by infinitely
long helical vortices with constant pitch and radius. The work is a further development
of a model developed in Okulov (J. Fluid Mech., vol. 521, p. 319) in which the linear
stability of N equally azimuthally spaced helical vortices was considered. In the
present work the analysis is extended to include an assigned vorticity field due to root
vortices and the hub of the rotor. Thus the tip vortices are assumed to be embedded
in an axisymmetric helical vortex field formed from the circulation of the inner part
of the rotor blades and the hub. As examples of inner vortex fields we consider
three generic axial columnar helical vortices, corresponding to Rankine, Gaussian
and Scully vortices, at radial extents ranging from the core radius of a tip vortex to
several rotor radii.

The analysis shows that the stability of tip vortices largely depends on the radial
extent of the hub vorticity as well as on the type of vorticity distribution. As part
of the analysis it is shown that a model in which the vortex system is replaced by
N tip vortices of strength Γ and a root vortex of strength −NΓ is unconditionally
unstable.

1. Introduction
The flow behind rotor systems, such as propellers, wind turbines, screws, or

helicopter rotors, is dominated by a system of strong trailing tip vortices that governs
the dynamics of the wake. The wake can generally be divided into two distinct
parts, near wake and far wake. Near-wake features are related to the genesis of
the vortex system where the presence of the rotor is felt directly. The far wake is
usually the downstream position where the wake dynamics does not depend on rotor
characteristics. In the present analysis we consider only the far wake and assume
it to be in a state where it extends infinitely upstream and infinitely downstream
with the same properties. This enables a stability analysis to be carried out locally
in a plane perpendicular to the rotor axis, the so-called Trefftz plane, and attention
is mainly focused on instability properties of a multiplicity of helical tip vortices.
Such an analysis has practical applications mainly in helicopter and wind turbine
aerodynamics. The geometry of the wake beneath a helicopter rotor is important
for predicting accurately air loads on the blades in hover or vertical flight. The
instability of the wake geometry is felt directly by the rotor and may have an impact
on performance, vibrations, acoustics, etc. Modern wind turbines are often grouped
in wind parks or ‘wind farms’. At some wind conditions some turbines may be in the
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wakes of others. This increases the fatigue loads and hence reduces the lifetime of
the turbine. In some cases the vortices become unstable and break down. It is clear
that if a wind turbine is located in a wake consisting of stable tip vortices, the fatigue
loading is more severe than if the vortices have broken down by instability.

As basic hypothesis for the far-wake modelling we assume that the wake is fully
developed and that the vorticity is concentrated in Nhelical tip vortices and a hub
or root vortex lying along the system axis. This (N+ 1)-vortex system consisting of
an array of infinitely long helical vortex lines with constant pitch and radius can be
considered as an extension of the wake description proposed by Joukowski in 1912
for a two-bladed propeller (see also Margoulis 1922). To distinguish between propeller
and turbine states the circulation of the tip vortices is taken as positive when power
is added to the flow and negative when power is subtracted from the flow. Another
difference is that the wake is expanding for a turbine whereas it is contracting for a
propeller. The stability problem, however, is similar for both types of rotor systems.

Gupta & Loewy (1974) were the first to consider the stability of a multiplicity of
helical vortices as a means of modelling tip vortices in rotor far wakes. Their analysis
dealt with the stability of centreline perturbations of the helical vortex system. They
extended the results of Levy & Forsdyke (1928) and Widnall (1972), who analysed
the linear stability of a multiplicity of single twisted helices using the so-called
cutoff approximation. Later numerical investigations of tip vortex stability beneath a
helicopter rotor are due to Bhagwat & Leishman (2000). In both investigations the
helical multiple was found to be unstable. This result is, however, in contradiction
to visualizations of rotor wakes showing that helical tip vortices subject small pitch
values are stable (see e.g. Vermeer, Sorensen & Crespo 2003). A limitation of the
above cited works is that the far wake is treated as consisting of helical vortices
generated by the blade tips only. This strongly restricts the possible variety of far-
wake structures arising behind multi-bladed rotors operating at different modes. To
cover stability for all possible operating regimes it is necessary to consider tip vortices
embedded in a wake flow generated by the trailing vortex sheet of the blades and the
root vortex as well.

In this context, the purpose of the present work is to define how different types of
assigned or prescribed flows influence the stability of multiple helical tip vortices.

2. Theory: stability analysis
In this section the theory of linear stability of a multiplicity of helical vortices

in equilibrium is treated. The analysis is a generalization of the model by Okulov
(2004) in order to cover more complex flow problems in which the helical vortices are
embedded in a vorticity-dominated assigned inviscid flow field.

The influence of an assigned flow on the stability of multiple vortices has so far
only been studied for a circular array of point vortices or straight vortex filaments
(the limiting case of a helical vortex with infinite pitch). In 1931 Havelock determined
the influence of an assigned flow on the stability properties. He found that if the
assigned flow is rotating like a rigid body the conditions for stability are the same as
for helical vortices in free space. On the other hand, if the assigned flow is induced
by a central point vortex with a total circulation that equals the negative sum of the
circulation of the vortex array, then the system is unconditionally unstable. Later,
Morikawa & Swenson (1971) found stable limits for the central vortex circulation.
Up to now, however, nobody has studied the influence of an assigned flow on helical
vortex stability.
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Figure 1. Sketch and notation for a circular equilibrium array of right-handed (a) and
left-handed (b) helical vortices in an assigned flow field with angular velocity Ω0 and axial
velocity V0.

As a basic configuration we consider the linear stability of infinitesimal spatial
displacements of an equilibrium helical vortex configuration Λ± (see figure 1). The
vortex system Λ± consists of N identical slender right- or left-handed helical vortices
of circulation Γ and constant pitch h, or l = h/2π, with their vortex axes lying on
a cylinder with radius a and displaced azimuthally by an angle φ = 2π/N . In the
following we use a double sign notation in which the upper sign refers to right-
handed helical vortices and the lower sign to left-handed ones. Dimensionless pitch
is introduced as τ = l/a. The vortex cores are assumed circular with radius rcore, or,
in dimensionless form, σ = rcore/a, where σ � 1. The vortex system is subject to the
additional constraints that 2σ < τ and N < π/σ . The vortex cores are superposed with
helical vortex filaments which are co-linear to the lines that define the centre of the
vortex:

r = a, z ∓ l(θ + nφ) = χ0 ≡ const. (2.1)

The vorticity of the vortex cores is uniformly distributed across the core cross-sections
(see e.g. Ricca 1994).

The assigned flow is assumed to be subject to the same helical symmetry as the
basic helical vortex configuration Λ±. This means that the following relation exists
between the components of the vorticity vector (Okulov 2004):

ωr = 0; ωθ/ωz = ±r/ l or ωθ ∓ r

l
ωz = 0. (2.2)

Assuming inviscid flow conditions, the vorticity components satisfy the transport
equations of Euler, which in helical variables (r, χ = θ ∓ z/l) reduce to the following
set of equations:

∂ωr

∂t
+ ur

∂ωr

∂r
+

(
uθ ∓ r

l
uz

)
∂ωr

r ∂χ
= ωr

∂ur

∂r
+

(
ωθ ∓ r

l
ωz

)
∂ur

r ∂χ
, (2.3a)
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∂ωθ

∂t
+ ur

∂ωθ

∂r
+

(
uθ ∓ r

l
uz

)
∂ωθ

r ∂χ
− urωθ

r
= ωr

∂uθ

∂r
+

(
ωθ ∓ r

l
ωz

)
∂uθ

r ∂χ
− uθωr

r
,

(2.3b)

∂ωz

∂t
+ ur

∂ωz

∂r
+

(
uθ ∓ r

l
uz

)
∂ωz

r ∂χ
= ωr

∂uz

∂r
+

(
ωθ ∓ r

l
ωz

)
∂uz

r ∂χ
. (2.3c)

From (2.2) it is readily seen that the right-hand sides of the equations are equal to
zero, implying that the vorticity does not vary along a trajectory of fluid particles.

As a further simplification, the assigned velocity field is assumed to consist of a
rotating flow with angular velocity Ω0(r) around the oz-axis of the vortex system Λ±

and a translating velocity V0(r) along the oz-axis. Such a non-perturbed Λ± vortex
system rotates with angular velocity

Ω(a) = Ω0(a) + ΩInd + ΩSind,

and moves uniformly along the axis of a cylinder of radius awith axial velocity

V (a) = V0(a) + VInd + VSind,

where subscript ‘Ind ’ refers to induction and ‘Sind ’ to self-induction. The total velocity
components are divided into three parts: (i) an invariant assigned flow field; (ii) an
induced flow field due to induction from the helical vortices on the surroundings;
(iii) a flow field due to self-induction, i.e. the velocity induced by an individual helical
vortex on its own trajectory. Note that in contrast to the plane case (Havelock 1931),
where the total vortex motion consists of an assigned flow field and the mutual
induction of the vortices, we also include self-induction.

Let the kth vortex (k ∈ [0, N − 1]) from Λ± be simultaneously displaced from the
equilibrium position r = a and θ = 2πk/N in a moving plane (r, θ +Ωt, z+V t) fixed at
z = const, such that (r, θ, z) = (a+rk, 2πk/N +Ωt +θk, z+V t +zk); then the equations
of motion of the kth disturbed vortex in the plane z = 0, for example, can be written
as

d

dt
(a + rk) =

∑
n(n�=k)

ur

(
a + rk, a + rn,

2π(n − k)

N
+ χk − χn

)
, (2.4a)

(a + rk)
d

dt

(
2πk

N
+ t[ΩInd + ΩSind + Ω0] + θk

)
=(a + rk)[ΩSind(a + rk) + Ω0(a + rk)]

+
∑

n(n�=k)

uθ

(
a + rk, a + rn,

2π(n − k)

N
+ χk − χn

)
, (2.4b)

d

dt
(t[VInd + VSind + V0] + zk)

=VSind(a + rk) + V0(a + rk) +
∑

n(n�=k)

uz

(
a + rk, a + rn,

2π(n − k)

N
+ χk − χn

)
. (2.4c)

The velocity field u = (ur, uθ , uz) induced by a single helical vortex is defined in helical
variables (r, χ = θ ∓ z/l), i.e. u = u(r, a, χ − χ0) is the value of the velocity at point
(r, χ) induced by the helical vortices with axes at points (a, χ0). Introducing the
displacement of the i-vortex core from (2.1) in helical variables as

ri and χi = θi ∓ zi/ l, (2.5)
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the disturbed positions of the fixed n-vortex and calculated reference k-point in
system (2.4) are given as (a + rn, 2πn/N + χn) and (a + rk, 2πk/N + χk) respectively.
The velocity of points situated outside the vortex cores Λ± may be determined by use
of Hardin’s (1982) solution here extended to both types of helical symmetry (figure 1):

ur (r, a, χ − χ0) =
Γ a

πl2
Im

{
H 1,1

1 (r/ l, a/l, χ − χ0)

H 1,1
1 (a/l, r/l, χ − χ0)

}
, (2.6a)

uθ (r, a, χ − χ0) =
Γ

2πr

{
0
1

}
+

Γ a

πrl
Re

{
H 0,1

1 (r/ l, a/l, χ − χ0)

H 1,0
1 (a/l, r/l, χ − χ0)

}
, (2.6b)

uz(r, a, χ − χ0) = ± Γ

2πl

{
1
0

}
∓ Γ a

πl2
Re

{
H 0,1

1 (r/ l, a/l, χ − χ0)

H 1,0
1 (a/l, r/l, χ − χ0)

}
, (2.6c)

where the terms in the braces are defined such that the upper one corresponds to
r < a and the lower one to r > a. Rewriting the Kapteyn series HI,J

M (x, y, χ) for x � y

with singularity isolation using the procedure of Okulov (2004), we obtain

HI,J
M (x, y, χ) =

∞∑
m=1

mMhI,J
m (x, y)eimχ ≡ CI,J

M,0

eξ+iχ

(eξ − eiχ )2
+ CI,J

M,1

eiχ

eξ − eiχ

+ CI,J
M,2 ln(1 − e−ξ+iχ ) + CI,J

M,3Li2(e
−ξ+iχ ) + CI,J

M,4Li3(e
−ξ+iχ ) +

∞∑
m=1

mMriI,J
m (x, y)eimχ,

(2.7)

where hI,J
m (x, y) = I

〈I 〉
m (mx)K

〈J 〉
m (my) is the product of modified Bessel functions if

I or J = 0 and their derivatives if I or J = 1; Li2 and Li3 are polylogarithms;

eξ =
x

y

exp
√

1 + x2

1 +
√

1 + x2

1 +
√

1 + y2

exp
√

1 + y2
;

CI,J =
2x−I

(−y)J
(
√

1 + x2)I−1/2

(
√

1 + y2)1/2−J

⎡
⎣0 0 1 αI,J βI,J

0 1 αI,J βI,J γ I,J

1 αI,J βI,J γ I,J 0

⎤
⎦;

ril,j
m (x, y) = I 〈I 〉

m (mx)K 〈J 〉
m (my) − (eχ )m

2x−I

(−y)J
(
√

1 + x2)I−1/2

(
√

1 + y2)1/2−J

(
1 +

αI,J

m
+

βI,J

m2
+

γ I,J

m3

)

and the coefficients in αI,J , βI,J , γ I,J are obtained as a result of multiplication
of the uniform expansion of cylindrical Bessel functions (see Appendix C in
Fukumoto & Okulov 2005). We will use the second form of the Kapteyn series
with singularity isolation because the coefficients hI,J

m of the initial trigonometric
series grow indefinitely with m in the neighbourhood of x = y(= 1) in the first form,
invalidating all calculations of the series there. In contrast, as proved by Okulov &
Fukumoto (2004), in the second form the decrease in magnitude of the coefficients
riI,J

m with m is rapid in the whole range of x. In the event that a high accuracy is
required the form with singularity isolation should be considered.

The velocity field induced by right- and left-hand helical vortex filaments differs in
the sign of the axial velocity component and in the definition of the helical variable
χ = θ ∓z/l. Using a triad of tangent, normal and binormal unit vectors along a helical
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Figure 2. Triad of unit vectors for vortex axis with right (a) and left (b) helical symmetry
and vorticity components for helix circulation with different sign.

vortex line (figure 2), we obtain

t± =

(
0, ± r√

r2 + l2
,

l√
r2 + l2

)
, n± = (−1, 0, 0), b± =

(
0, ∓ l√

r2 + l2
,

r√
r2 + l2

)
.

The corresponding velocity components are given as

u±
τ = ±

√
r2 + l2

l
t · u = uz ± r

l
uθ ≡ ±const, u±

n = −ur,

u±
χ = ∓

√
r2 + l2

l
b · u = uθ ∓ r

l
uz. (2.8)

It has been shown by Okulov (2004) that vorticity fields with helical symmetry attain
a constant value of u±

τ at all points in the flow field, including the cores of the
helical vortices Λ±. When inserting (2.6b) and (2.6c) into (2.8) for flows induced by
either a vortex system of type Λ+ or of typeΛ−, i.e. with right- or left-handed helical
symmetry, it is easily seen that the value of u±

χ is the same, whereas u±
τ depends on

the sign. For simplicity, u±
χ will in the following be referred to as uχ , and the assigned

flow will be denoted u0χ
. Combining (2.4b) and (2.4c) with (2.5) and (2.8) results in

the following equation:

(a + rk)
d

dt

(
2πk

N
+

t

a

[
uIndχ

+ uSindχ
+ u0χ

]
+ χk

)

= uSindχ
(a + rk) + u

±
0χ

(a + rk) +
∑

n(n�=k)

uχ

(
a + rk, a + rn,

2π(n − k)

N
+ χk − χn

)
, (2.9)

hence reducing the system (2.4) to two equations (2.4a) and (2.9) in helical variables.
The velocity of the assigned flow field is given by

u0χ
(r) = r[Ω0(r) − V0(r)/l]. (2.10)

By linearizing rk , rn, χk , χn a linear approximation of (2.4a) and (2.9) for the motion
of the kth vortex can be written as

drk

dt
=

∑
n(n�=k)

[
rk

d

dr
ur

(
a, a,

2π(n − k)

N

)
+ rn

d

da
ur

(
a, a,

2π(n − k)

N

)]

+
∑

n(n�=k)

[
χk

d

dχ
ur

(
a, a,

2π(n − k)

N

)
+ χn

d

dχ0

ur

(
a, a,

2π(n − k)

N

)]
, (2.11a)
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a
dχk

dt
= −rk

a

[
uIndχ

+ uSindχ
+ u0χ

]
+ rk

d

da
uSindχ

+ rk

d

dr
u0χ

+
∑

n(n�=k)

[
rk

d

dr
uχ

(
a, a,

2π(n − k)

N

)
+ rn

d

da
uχ

(
a, a,

2π(n − k)

N

)]

+
∑

n(n�=k)

[
χk

d

dχ
uχ

(
a, a,

2π(n − k)

N

)
+ χn

d

dχ0

uχ

(
a, a,

2π(n − k)

N

)]
. (2.11b)

Following Havelock (1931) we search for a solution of system (2.11a) and (2.11b) in
the form

rk = α(t) exp

(
2πi

ks

N

)
, χk = β(t) exp

(
2πi

ks

N

)
.

Here s is the subharmonic wavenumber that takes values within the range [1, N − 1],
corresponding to N − 1 independent eigenfunctions. When s = 0, the displacement of
the vortices consists of a rotation combined with a small change in radius. The result
is a new steady state with a corresponding small change in angular velocity.

When introducing the above perturbations the first sum in (2.11a) and the last sum
in (2.11b) become identically zero (see Appendix A in Okulov 2004):

α(t) exp

(
2πi

ks

N

)
Γ

πa2

∞∑
m=1

[(
1 + τ 2

τ 3
m2h0,1

m

(
1

τ
,
1

τ

)

− 1

τ
mh1,1

m

(
1

τ
,
1

τ

)) ∑
n(n�=k)

sin

(
2πm(n − k)

N

)]

+ α(t)
Γ

πa2

1 + τ 2

τ 3

∞∑
m=1

[(
m2h0,1

m

(
1

τ
,
1

τ

)) ∑
n(n�=k)

exp
(
2πi

ns

N

)
sin

(
2πm(n − k)

N

)]
= 0,

−β (t) exp

(
2πi

ks

N

)
Γ

πa

1 + τ 2

τ 3

∞∑
m=1

[
m2h0,1

m

(
1

τ
,
1

τ

) ∑
n(n�=k)

sin

(
2πm (n − k)

N

)]

+ β (t)
Γ

πa

1 + τ 2

τ 3

∞∑
m=1

[
m2h0,1

m

(
1

τ
,
1

τ

) ∑
n(n�=k)

exp
(
2πi

ns

N

)
sin

(
2πm (n − k)

N

)]
= 0.

Next, using sums of singularities situated on a circumference with identical
displacement (see Appendix D in Okulov 2004) and Kapteyn series with singularity
isolation, equation (2.7), the remainder sum in (2.11a), β(t) exp(2πiks/N)DInd r (N, s, τ ),
and the remainder sum in (2.11b), α(t) exp(2πiks/N)DIndχ (N, s, τ ), may after some
algebra be evaluated as

4πa

Γ
DInd r (N, s, τ ) = s(N − s)

√
1 + τ 2

τ
− τ

4

4τ 2 − 3

(1 + τ 2)5/2

(
N

s
− E − ψ

(
− s

N

))

+
4

τ 2

∞∑
m=1

[
m2ri1,1

m

(
1

τ
,
1

τ

) N−1∑
n=0

(
1 − exp

(
2πi

ns

N

))
cos

(
2π

nm

N

)]
, (2.12a)
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4πa2

Γ

τ 2

1 + τ 2
DIndχ (N, s, τ ) = s(N − s)

√
1 + τ 2

τ
− N + 1 + 2

N − 2

1 + τ 2

+
τ 3

(1 + τ 2)5/2

(
ln(N) −

(
1 − 1

4τ 2

)(
N

s
− E − ψ

(
− s

N

)))

+
τ 3(1 − τ 2)

(1 + τ 2)11/2

(
τ 4 − 3τ 2 +

3

8

)
N2 − 1

N2
ς(3)

+
4

τ 2

∞∑
m=1

[(
m2 ri1,1

m

(
1

τ
,
1

τ

)
+ m

τ (1 − τ 2)

(1 + τ 2)
ri0,1

m

(
1

τ
,
1

τ

)) N−1∑
n=0

cos

(
2π

nm

N

)]

+
4(1 + τ 2)

τ 2

∞∑
m=1

[
m2 ri0,0

m

(
1

τ
,
1

τ

) N−1∑
n=0

exp

(
2πi

ns

N

)
cos

(
2π

nm

N

)]
, (2.12b)

where E = 0.577215 . . . is the Euler constant, and ψ(·) is the psi-function.
In accordance with the procedure described in Okulov (2004) an exact solution for

the sum of the induced and the self-induced velocity components in (2.11b) may be
derived as

4πa

Γ

(
uIndχ + uSindχ

)
= N −

√
1 + τ 2

τ
− N

τ 2
+

1

τ (1 + τ 2)1/2

(
ln

N(1 + τ 2)3/2

τ
− ln

1

σ
+

1

4

)

− τ

(1 + τ 2)7/2

(
τ 4 − 3τ 2 +

3

8

)
ς(3)

N2
+ 4

1 + τ 2

τ 3

∞∑
m=1

[
m ri1,0

m

(
1

τ
,
1

τ

) N−1∑
n=0

cos

(
2π

nm

N

)]

(2.13)

where the self-induced component is derived by setting N = 1, i.e.

4πa

Γ
uSindχ = 1 −

√
1 + τ 2

τ
− 1

τ 2
+

1

τ (1 + τ 2)1/2

(
ln

(1 + τ 2)3/2

τ
− ln

1

σ
+

1

4

)

− τ

(1 + τ 2)7/2

(
τ 4 − 3τ 2 +

3

8

)
ς(3) + 4

1 + τ 2

τ 3

∞∑
m=1

m ri1,0
m

(
1

τ
,
1

τ

)
. (2.14)

The coefficients of the trigonometric series of the regular remainders are defined as

ri0,0
m

(
1

τ
,
1

τ

)
= Im

(
m

τ

)
Km

(
m

τ

)
− τ

2m(1 + τ 2)1/2

(
1 − τ 2

2m2(1 + τ 2)3

(
τ 2 − 3

4

))
,

ri0,1
m

(
1

τ
,
1

τ

)
= Im

(
m

τ

)
K ′

m

(
m

τ

)

+
τ

2m

(
1 +

τ

2m(1 + τ 2)3/2
+

τ 3

2m3(1 + τ 2)9/2

(
τ 4 − 3τ 2 +

3

8

))
,

ri1,0
m

(
1

τ
,
1

τ

)
= I ′

m

(
m

τ

)
Km

(
m

τ

)

− τ

2m

(
1 − τ

2m(1 + τ 2)3/2
− τ 3

2m3(1 + τ 2)9/2

(
τ 4 − 3τ 2 +

3

8

))
,

ri1,1
m

(
1

τ
,
1

τ

)
= I ′

m

(
m

τ

)
K ′

m

(
m

τ

)
+

τ (1 + τ 2)1/2

2m

(
1 +

τ 2

2m2(1 + τ 2)3

(
τ 2 − 3

4

))
,
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and
N−1∑
n=0

cos
(
2π

nm

N

)
=

{
N if m = kN

0 if m �= kN
(k = 1, 2, 3 . . .). (2.15)

Now (2.12)–(2.14) are written as exact solutions, in contrast to the approximate
formulae (4.8) and (4.10) in Okulov (2004) where only one term of the regular
remainder (m = 1) was maintained. Thus, the proposed formulae can be used with
any desired precision. For example, a calculation of (2.14) with five terms of the
regular remainder is in complete agreement with computations of Boersma & Wood
(1999) and Wood & Boersma (2001) using six significant figures.

An additional term considered in (2.11b) is the derivative of the self-induced motion
(2.14) that, after some algebra, takes the form

4πa2

Γ

d

da
uSindχ

= −1 − 1

τ 2
+

τ 4 − τ 2 + 1

τ (1 + τ 2)3/2
+

τ

(1 + τ 2)3/2

(
ln

(1 + τ 2)3/2

τ
− ln

1

σ
+

1

4

)

+
τ ς(3)

(1 + τ 2)9/2

(
τ 6 − 4τ 4 +

27

8
τ 2 − 3

8

)
+ 4

1 − τ 2

τ 3

∞∑
m=1

[
m ri1,0

m

(
1

τ
,
1

τ

)]

+
4(1 + τ 2)

τ 4

∞∑
m=1

[
m2 ri1,1

m

(
1

τ
,
1

τ

)
+

(
1 + τ 2

)
m2 ri0,0

m

(
1

τ
,
1

τ

)]
. (2.16)

In the previous work of Okulov (2004) the influence of a change in the self-induced
movement of the vortices on the vortex stability, equation (2.16), was neglected.
However, as will be shown below, the terms of (2.16) have a large influence on the
stability properties.

From (2.11), the system of equations for α, β reduces to

α′(t) = A(N, s, τ )β, β ′(t) = B(N, s, τ, σ, u0χ )α, (2.17)

where

A =
4πa

Γ
DInd r and B =

4πa2

Γ

[
DIndχ

+
d

da
uSindχ

−
uIndχ

+ uSindχ

a

]
+

(
d

dr
u0χ − u0χ

a

)
.

This implies that α and β are proportional to (t
√

AB). Therefore, a system consisting
of N helical vortices is unstable if AB � 0 for any combination of s, τ and ε.

Figure 3 shows a typical behaviour of A as a function of the vortex pitch τ for
s = 1 and various values of N . As A is positive for all values of s, τ and N , the
stability condition only depends on the sign of B , which, for helical vortices in free
space without an assigned flow, i.e. for B(N, s, τ, σ, 0) ≡ B0(N, s, τ, σ ), can be written
in the form

B0 = s(N − s)
(1 + τ 2)3/2

τ 3
− 2N + 2

N − 2

τ 2
+

1 + 2τ 2

τ (1 + τ 2)1/2

+
1

τ (1 + τ 2)3/2

[(
τ 2 − 1

4

) (
E + ψ

(
− s

N

)
− N

s

)

+
3

4
− 2τ 2 − ln

(
Nε

(1 + τ 2)3/2

τ

)]
+

τ 3

(1 + τ 2)9/2

(
2τ 4 − 6τ 2 +

3

4

)
ς(3)

N2

+
4(1 + τ 2)

τ 3

∞∑
m=1

[(
m2

τ
ri1,1

m

(
1

τ
,
1

τ

)
− m ri1,0

m

(
1

τ
,
1

τ

))(
1 +

N−1∑
n=0

cos

(
2π

nm

N

))]
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Figure 3. Computed co-factors A and B0 (without assigned flow) as a function of vortex pitch
τ , for s = 1 and various values of N , based on exact solution (——) and on a solution without
remainder terms (· · ·· · ·).

+
4

(
1 − τ 2

)
τ 3

∞∑
m=1

[(
m ri0,1

m

(
1

τ
,
1

τ

)) (
1 +

N−1∑
n=0

cos

(
2π

nm

N

))]

+
4

(
1 + τ 2

)2

τ 4

∞∑
m=1

[
m2 ri0,0

m

(
1

τ
,
1

τ

) (
1 +

N−1∑
n=0

exp

(
2πi

ns

N

)
cos

(
2π

nm

N

))]
.

(2.18)

In figure 3 the behaviour of B0 is shown for different helical multiples in free space.
It is seen that, depending on the value of the pitch τ , the vortex system may be
either stable or unstable. For τ -values less than about 1.6 the system is always
unstable if N � 2. Note that in the limit τ → ∞, A and B0 tend to the point vortex
solution

4πaA/Γ = s(N − s) and 4πa2B0/Γ = s(N − s) − 2(N − 1),

described by Havelock (1931). The asymptotic levels for A and B0 are indicated by
horizontal dot-dash lines in the plots. In the figures calculations of A and B0 are also
shown without the regular remainders in equations (2.12)–(2.14) and (2.16). Note that
analysing the asymptotic solution at τ → ∞ helps to define the most unstable modes
for s by taking the value closest to N/2, i.e. s∗ = N/2 for even N and s∗ = (N ± 1)/2
for odd N . In the following only the principal wavenumbers are used to estimate the
unstable regions.

In the next section we consider the influence of different assigned flows on the
equilibrium properties of the helical multiple. First, however, we evaluate how the
regular reminders and the derivative of the self-induced motion described by (2.16)
influence the stability properties of B0. In order to do this, calculations of B0-neutral
curves are repeated and compared in figure 4 with and without the terms in (2.16).
In the figure the computations are further compared to figure 7 in Okulov (2004).
From figures 3 and 4 it is seen that neglecting the terms of the regular reminders only
has a limited influence on the stability properties, hence these terms may be omitted.
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Figure 4. Neutral stability curves (stable region above each curve) for equilibrium of a pair
(a), triplet (b) and quartet (c) of helical vortices based on exact solution (——) and on a
solution without remainder terms (– – –). Data of Okulov (2004) are indicated by · · · · · ·.
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Figure 5. Examples of B0 (without assigned flow) for multiple helical vortices (a) and
corresponding relative velocity plots about the vortex axis for (b) unstable and (c) stable
critical points.

In contrast to this, the influence of a change in the self-induction movement of the
vortices cannot be completely neglected, as clearly illustrated by figure 4.

Figure 5 explains the physical meaning of vortex equilibrium instability when B0

becomes positive. Here planar velocity plots in the vicinity of the vortex centre from
an array of rotating vortices in equilibrium is reproduced for B0 < 0 (N =5, s = 3,
τ → ∞) and B0 > 0 (N = 15, s = 3, τ → ∞). In the first case the velocity field at the
vortex position has a stable critical point (velocity plot c) and for the second one the
point is unstable (velocity plot b). Note also that a multiple consisting of seven helical
vortices is unstable for all finite pitch values with B0 > 0, and only at τ → ∞, where
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Figure 6. Examples of assigned flows with different axial vorticity distributions: Rankine
(——-), Lamb (– – –) and Scully (· · · ·) types. (b) Helical velocity component: thick lines
correspond to τhub = 1 and thin lines to τhub → ∞.

the problem is reduced to the stability of an array of point vortices, is the system
neutrally stable with B0 = 0, according to Kurakin & Yudovich (2002).

3. Parametrical study of stability condition
In the previous section we tested the stability of multiple helical vortices subject

only to induced and self-induced actions without an assigned velocity field, i.e. with
the last term in the definition of B , equation (2.17), set equal to zero. In this
section we investigate the conditions for linear stability to infinitesimally small space
displacements of a multiplicity of helical vortices embedded in an assigned flow field.
It is implicitly assumed that the vortices do not influence the assigned flow field.

As examples of assigned flows, different types of axisymmetric columnar helical
vortices of finite core size having their axes coinciding with the multiple axis oz will
be considered in the following. Since the axial component of velocity is connected to
the azimuthal velocity by (2.8), and introducing the vorticity components ωr = 0 and
ωθ = r ωz/ l with the helical pitch l, the expression for the assigned velocity field is
written as

(u0)θ =
1

r

∫ r

0

ωz(r)r dr, (u0)z = V∞ − 1

lhub

∫ r

0

ωz(r)r dr, V∞ = const, (3.1)

where ωz(r) is the axial vorticity distribution along the columnar vortex core and V∞
defines the translational motion of the total vortex system.

Within the framework of the proposed inviscid flow model, it is possible to choose an
arbitrary vorticity distribution in the vortex core (Kuibin & Okulov 1996; Alekseenko
et al. 1999). There are three important examples of columnar vortices with a simple
distribution of axial vorticity in a cylindrical core of effective radius rhub (figure 6a):

ωz =
Γ0

πr2
hub

{
1, r � rhub

0, r > rhub,
ωz =

Γ0

πr2
hub

exp

(
− r2

r2
hub

)
ωz =

Γ0

πr2
hub

(
1 +

r2

r2
hub

)−2

,

(3.2)
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where Γ0 is the circulation of the assigned flow field. In the two-dimensional case,
where l → ∞ and ωθ → 0, these vortices correspond to Rankine, Lamb and Scully
vortices, respectively (Hopfinger & van Heijst 1993; Scully 1975). In the following they
are referred to as R-, L- and S-vortices, respectively. The R-model consists of a step-
shape vorticity distribution, which is a rather crude model that can only be applied
as a first-order approximation of a real vortex core. As seen from figure 6, the L- and
S-vortices are very similar, the main difference being that the S-vortex is described
by a polynomial whereas the vorticity distribution of the L-vortex is Gaussian.
Comparing the vorticity distributions with measured data shows that the L-vortex
fits laminar velocity profiles well whereas the S-vortex is a suitable approximation
for turbulent vortices (see Murakhtina & Okulov 2000; Martemianov &
Okulov 2004).

From (3.1), (3.2) and (2.8) the helical velocity components for the three distributions
of assigned hub vorticity are written as, respectively,

u0χ =
Γ0

2πr

(
1 +

r2

l2

) {
r2/r2

hub, r � rhub

1, r > rhub

}
+ V∞

r

l
, (3.3a)

u0χ =
Γ0

2πr

(
1 +

r2

l2

) [
1 − exp

(
− r2

r2
hub

)]
+ V∞

r

l
, (3.3b)

u0χ =
Γ0

2πr

(
1 +

r2

l2

)
r2

r2 + r2
hub

+ V∞
r

l
, (3.3c)

Figure 6(b) shows the behaviour of the helical velocity component u0χ with Γ0 = 2π
and V∞ = 0 for finite helical pitch l/rhub = 1 (thick lines) and infinite helical pitch
l → ∞ (thin lines).

To establish a connection between the properties of the helical vortices and the
assigned flow we introduce the circulation ratio γ =Γ0/NΓ , which is the strength of
the hub vortex divided by the total circulation of the multiple, and the relative size
of the hub vortex, δ = rhub/a, which is the core radius of the hub vortex normalized
by the radius of the vortex multiple. The dimensionless hub-vortex pitch τ = l/a is
assumed to keep the same value as that of the multiple. The last term of B given below
(2.17) describes the influence of the assigned velocity field. Introducing (3.3a)–(3.3c),
depending on the type of assigned flow field, this term takes the dimensionless forms:

R-type vorticity distribution

BA(N, τ, δ, γ ) =
4πa2

Γ

(
d

dr
u0χ − u0χ

a

)
= 4Nγ

{
−1, δ < 1
1/τ 2δ2, δ � 1,

(3.4a)

L-type vorticity distribution

BA(N, τ, δ, γ ) =
4πa2

Γ

(
d

dr
u0χ − u0χ

a

)
= 4Nγ

[(
1 + τ 2

δ2τ 2
+ 1

)
exp

(
− 1

δ2

)
− 1

]
,

(3.4b)

S-type vorticity distribution

BA(N, τ, δ, γ ) =
4πa2

Γ

(
d

dr
u0χ − u0χ

a

)
= 4Nγ

1

1 + δ2

[
1 + τ 2

τ 2

δ2

1 + δ2
− 1

]
. (3.4c)

Note that, irrespective of flow type, BA does not contain any term with V∞, implying
that the translational motion does not influence the stability. In figure 7, BA is com-
pared for all three assigned vorticity fields for τ =1 (thick lines) and τ = ∞ (thin lines).
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Figure 7. Dependence of contribution BA of an assigned flows on effective radius δ for
different axial vorticity distributions: Rankine (——–), Lamb (– – –) and Scully (· · · ·) types.
Thick lines correspond to τhub = 1 and thin lines to τhub → ∞.

Substituting B0 from (2.18) and BA from (3.4a)–(3.4c) in the definition of B , given
below (2.17), the stability conditions are governed by the correlation equation

B(N, s, τ, σ, δ, γ ) ≡ B0(N, s, τ, σ ) + B(N, τ, δ, γ ) = 0. (3.5)

The equation shows how the stability problem depends on the parameters
{N, s, τ, σ, δ, γ }.

In the following we analyse the stability properties of multiples of helical vortices
Λ± with different numbers of vortices N and values of the core size δ, as a function
of helical pitch τ and circulation ratio γ for the three assigned flow fields. The most
unstable mode is taken as the subharmonic wavenumber, s, that is closest to N/2.
For simplicity, the core radius is fixed at σ = 0.05. In figures 7–12 stable regions are
located on the side of the neutral curves with the darkest shading.

3.1. Stability analysis for vortices embedded in an assigned flow of R-type

As seen from figure 7 there exist two ranges of BA depending on whether the hub
vortex lies inside (δ < 1 or rhub < a) or outside (δ � 1 or rhub � a) the surface formed
by the helical vortices.

In the first range (0 � δ < 1), BA/4Nγ = −1, independent of the value of the helical
pitch τ . Thus, in this region the stability limit is the same for all internal hub vortices,
independent of the size of the core radius. Plots (a) of figures 8–10 show neutral
stability curves for a pair of helical vortices (figure 8a), and for multiple helical
vortices with N < 7 (figure 9a) and N � 7 (figure 10a). The vortex configuration is
unconditionally unstable for small values of the helical pitch τ and for most of the
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Figure 8. Neutral stability curves for a pair of helical vortices (N = 2) embedded in an R-type
flow with different size of hub vortex core. Stable regions are located on the side of the curve
with the darkest shading. (a) 0 � δ � 1 (——); (b) δ = 1 (——–), 1.5 (– – –), 2 (– · – ·), 50 (· · ·· · ·).
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Figure 9. Neutral stability curves for multiple helical vortices with N < 7: N = 3 (——–) and
5 (– – –) embedded in an R-type flow with different size of hub vortex core. Stable regions are
located on the side of the curve with the darkest shading. (a) σ � δ � 1; (b) δ = 1.5 and 50
(· · ·· · · for both multiples).

negative values of γ , including the important case γ = −1 where the total circulation
of the vortex configuration is zero. For N < 7 stable states may exist for 0 > γ > −1.
For τ → ∞ the stability limit is given as

γ∞ = [s(N − s) − 2(N − 1)]/4N. (3.6)
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Figure 10. Neutral stability curves for multiple helical vortices with N > 7: N = 7 (· · ·· · ·), 9
(– – –), 12 (– · – ·), 15 (——) embedded in an R-type flow with different size of hub vortex core.
Stable regions are located on the side of the curve with the darkest shading. (a) 0 � δ � 1 and
(b) δ =3.
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Table 1. γ -stability limits at τ → ∞ for R-type hub vorticity distribution with δ < 1.

These values are given in table 1. Note that (3.6) is identical to the stability limit
of an (N + 1)-system consisting of N point vortices in a circular array and a centre
vortex, found by Morikawa & Swenson (1971). However, they mistakenly wrote that
the stability limit becomes infinite for N = 2 and 3.

In the second case, where δ � 1, BA(δ) is a decreasing positive function for all
finite helical pitch values τ . Further, BA(δ) tends to zero for δ → ∞, that is when the
assigned flow rotates as rigid body, and for an infinite pitch τ → ∞, that is when the
multiple turns into a circular array of point vortices. This means that the condition
for stability of a circular array of point vortices embedded in a flow field rotating
like a rigid body takes the same form as the condition for a vortex system in free
space without hub vorticity (Havelock 1931). Examples of stability regions for a pair
of helical vortices with finite pitch are presented in figure 8(b) for different values of
δ. Unlike the first case with internal hub vortex core, BA changes sign and the vortex
configuration becomes stable for most of the negative values of γ , including the case
γ = −1, where the total circulation of the vortex configuration is zero. At δ = 1 the
unstable zone decreases when τ increases and the stable zone expands to all values of
γ when τ → ∞, in accordance with Havelock’s analysis for a system of point vortices.
On increasing δ the neutral curves ‘turns’ around the point (γ = 0, τ = τ0), implying
that neutral stability is always achieved for multiple vortices in free space. The values
of τ0 as a function of the number of helical vortices are given in table 2. In the
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N 2 3 4 5 6

τ0 1.106 1.132 2.019 2.481 4.310

Table 2. Neutral points for multiple stability in free space (γ = 0).

N 2 3 4 5 6

δ0 0.955 1.106 1.536 1.845 3.101
δ∗ 1.491 1.682 2.253 2.675 4.423
γ∞ −0.417 −0.844 −1.837 −2.811 −8.255

Table 3. Stability characteristics for S-type hub vorticity distribution.

N 2 3 4 5 6

δ0 1.106 1.132 2.019 2.481 4.310
δ∗ 1.856 2.157 3.025 3.649 6.176
γ∞ −0.617 −1.333 −3.222 −5.122 −15.96

Table 4. Stability characteristics for L-type hub vorticity distribution.

limiting case δ → ∞, where the space is a rotating rigid body, the helix couple is stable
for all γ when τ � τ0.

It is remarkable that, as in the case of a circular array of point vortices (Havelock
1931), the stability problem of a system of helical vortices with N = 7 has to be
considered as a special case. Indeed, the stability properties of multiples with N < 7are
quite different from multiples with N > 7. For N < 7 (figure 9b) the behaviour of the
neutral stability curves is similar to that for a pair of vortices. A distinction between
the various numbers of vortices (2 � N < 7) may be found in the different values of
the neutral point τ (see table 2). For N > 7 (figure 10b) the unstable zone increases
with growing τ and expands to all values of γ when τ → ∞, in accordance with
Havelock’s finding for point vortex systems with N > 7.

3.2. Stability analysis for vortices embedded in assigned flows of L- and S-type

For L- or S-type vorticity distributions it is not possible to distinguish between
internal and external multiples, since the hub vorticity has non-zero values up to
infinity (figure 6a). Essential features of the function BA are shown in figure 7. The
general behaviour is that BA(δ) increases from a negative value at δ = 0 to a maximum
value at δ = δ∗, after which it decreases monotonically to zero for δ → ∞. Further,
BA shifts sign from negative to positive at δ = δ0. The values of δ0, δ∗ and γ∞, as a
function of the number of blades, are given in tables 3 and 4.

For both L- and S-type vorticity distributions an additional stable region, which
disappears for small δ-values, is found in the left bottom part of the plots in
figures 11(a) and 11(b) for δ < δ0. It is noteworthy that the two stable regions are
disconnected for δ < δ0 and that the neutral stability curves merge when δ = δ0. In the
figures the horizontal lines define the neutral values of τ0 for stability of multiples in
free space when γ = 0 (see also table 2).

Comparing the stability curves of figure 8(a) with those of figures 11(a) and 11(b)
it is seen that the stability properties for small δ-values are very similar for the three
types of vorticity distributions. This is readily explained from figure 7 where the value
of BA/4Nγ for all cases is close to –1.
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Figure 11. Neutral stability curves for a pair of helical vortices (N = 2) embedded in (a, c)
L- and (b, d) S-type flows with different size of the hub vortex core (with values δ0 and δ∗
from tables 2 and 3). Stable regions are located on the side of the curve with the darkest
shading. (a, b) δ = σ (——), 0.5δ0 (–·–·), 0.75δ0 (– – –), 0.99δ0, and δ0 (——); (c, d) δ = δ0 (——),
δ0 + 0.1(δ∗ − δ0) (· · ·· · ·), δ0 + 0.5(δ∗ − δ0) (– – –), and δ∗(——).

The next state of stability appears when δ0 < δ < δ∗. Figures 11(c) and 11(d) show
that the area of stability now has become singly-connected and that it grows in size
when δ increases. For δ � δ∗, BA(δ) is a decreasing positive function that tends to zero
for δ → ∞ and becomes identically equal to zero for an infinite value of the pitch
τ . The behaviour of BA(δ) is in this case similar for the three vortex types and the
stability regions for L- and S-type vortices are similar to that for R-type assigned flow.
For increasing δ-values the upper branch of the neutral stability curves disappears
and the lower ones ‘turn’ around the neutral point τ0 of the pair stability in free space
(table 2) to achieve a limiting case at δ → ∞, when all space is rotating like a rigid
body and the helical pair is stable for all γ if τ � τ0.
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Figure 12. Neutral stability curves for multiple helical vortices with N < 7: N = 3 (· · ·· · ·), 4
(– – –), 5 (– · – ·), and 6 (——) embedded in (a) L- and (b) S-type flows at δ = δ0. Stable regions
are located on the side of the curve with the darkest shading.
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Figure 13. Neutral stability curves for multiple helical vortices with N > 7: N = 7 (· · ·· · ·), 9
(– – –), 12 (– · – ·), 15 (——) embedded in (a) L- and (b) S-type flows at δ =3. Stable regions
are located on the side of the curve with the darkest shading.

To analyse the influence of the number of vortices we put δ = δ0 for simplicity and
predict the limit neutral stability curves when the two stable regions merge. Again
two different cases have to be considered. For N < 7 the stability regions correspond
qualitatively to those obtained for a pair of vortices, as described above. This is seen
in figure 12 that displays the neutral stability curves for δ = δ0 and for N = 3, 4, 5,
and 6. For N � 7, however, the behaviour of the stability curves is quite different.
As seen from figure 13 the stability regions are now divided into two non-connected
areas which disperse at increasing N .
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Figure 14. Sketch of the far-wake model proposed by Joukowski (1912).

For τ → ∞ the stability curve becomes independent of the pitch and limited by the
following expressions for γ :

γ∞ =
δ2

4N

s(N − s) − 2(N − 1)

δ2 − (1 + δ2) exp(−1/δ2)
, (3.7a)

γ∞ =
s(N − s) − 2(N − 1)

4N(1 + δ2)2
, (3.7b)

for L- and S-type flows, respectively. Note that the limit values (3.7a) and (3.7b) differ
from the limit values given by (3.6) for the R-type case by a factor that only depends
on δ.

Comparing the stability properties of the various types of hub vortices, it is noted
that the stability properties of helical multiples embedded in a hub vortex of L- or
S-type at δ = o(0) and δ � 1 are close to those embedded in a vortex of R-type. This
is most easily seen by comparing the BA-functions in figure 7. A distinct feature of
the R-type hub vortex, however, is that it is associated with discontinuous stability
properties due to the stepwise change in the sign of BA at δ = 1. Comparing plots
(a) and (b) in figures 8–10 the discontinuous stability behaviour is seen to result in
two markedly different areas of stability, depending on whether BA < 0 or BA > 0. In
contrast to this, both S- and L-type hub vortices exhibit continuous stability features,
as seen in figures 11–13. Comparing the figures, it is found that the stability properties
of the L- and S-type hub vortices for δ = o(1) are generally quite different from those
of the R-type hub vortex, but that the stability behaviour of the L- and S-type vortices
corresponds to that of the R-type at small and large δ-values. Further, it may be
noted that the L-type hub vortex generally exhibits better stability properties than
the corresponding S-type hub vortex.

4. Application of the analysis
In 1912 Joukowski proposed a simple model for a two-bladed propeller that

basically consists of two rotating horseshoe vortices, corresponding to the tip and
root vortices created by the rotation of the propeller blades. The tip vortices are
represented by helical vortices of strength Γ and the root or hub vortex is represented
by an axial vortex of strength Γ0 = −2Γ , in order to conserve circulation. In the far
wake behind the rotor plane the flow is described by infinitely long helical vortices
with constant pitch and radius (see figure 14). Based on this model the self-induced
motion of the helical tip vortices was investigated. From a historical point of view it
is interesting to note that Joukowski (1912) was the first to exploit the Biot-Savart
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integral to prove that the self-induced velocity of a helix may be evaluated roughly
via the self-induced velocity of an osculating vortex ring.

The first fundamental analysis of the linear stability of multiple helical vortices was
carried out by Gupta & Loewy (1974) who, using a numerical cutoff approximation,
extended the stability analysis by Levy & Forsdyke (1928) and Widnall (1972) for
centreline perturbations of a single helical vortex. Gupta & Loewy (1974) simulated
the far wake behind the rotor as multiple helical vortices and found it to be inherently
unstable with many possible instability modes. It should be noted, however, that most
of the results of Gupta & Loewy were calculated at a pitch value τ =0.1 and a vortex
core of radius σ = 0.1 or 0.33. A similar conclusion was given by Okulov (2004) in the
first analytically obtained solution to the problem (see figure 4). Indeed, the neutral
stability curves for all N-multiples and values of the vortex core lie in the region τ > 1,
meaning that instability occurs for all smaller pitch values, including the cases treated
by Gupta & Loewy. An interesting feature of the stability problem is that it seems
not to depend on the type of disturbance introduced: in the analysis of Gupta &
Loewy (1974) a sinusoidal disturbance was introduced whereas a constant spatial
displacement was employed by Okulov (2004). The reason is readily explained by
inspection of the velocity plots in figures 5(b) and 5(c). Here arbitrary infinitesimal
perturbations of the helix centre from its equilibrium in free space results in instability
when the relative velocity distribution describes an unstable critical point (figure 5b),
whereas perturbations damp out when the velocity distribution describes a stable
critical point (figure 5c).

Unfortunately the conclusions concern the stability of helical multiples in free space
only. If we return to Joukowski’s far-wake model with a concentrated root vortex
(figure 14) we find that the tip vortex system is unconditionally unstable for all
pitch values (see plots a of figures 8, 9 and 10 for γ = −1). It may be noted that
this important conclusion is the result of an exact analysis, involving all dominant
terms, whereas our previous conclusion about the possibility of conditional stability
for Joukowski’s model (Okulov & Sorensen, 2004a, b) was due to an approximate
approach in which we neglected the derivatives of the self-induced motion, described
by (2.16), and the assigned flow defined by the first term in the definition of BA in (3.4).
On the other hand, our conclusion about the unconditional instability of Joukowski’s
model seems to be in conflict with numerous visualizations of rotor wakes showing
that helical tip vortices, even with small pitch values, can be stable (see e.g. Vermeer
et al. 2003).

The most likely explanation for this apparent contradiction is that the model
of Joukowski is too simplified to describe the general behaviour of rotor flows.
Joukowski’s model is based on the assumption that the circulation is constant over the
blade span, and that the wake only consists of a root vortex and trailing tip vortices.
Considering the non-constant circulation that usually characterizes the operating
range of a rotor, trailing vortices are created behind the rotor blades. These vortices
form a helical vortex sheet or screw surface along with the strong tip vortices. After
the vortex sheet and the tip vortices are formed behind the rotor, a complicated
roll-up process starts to take place due to the mutual influence between the vortices.
It is likely that this process will eventually divide the flow field into strong, distinct
helical tip vortices and a more or less compact centre vortex with a core size of up
to a rotor radius (see e.g. Landgrebe 1972 and Vermeer et al. 2003). This behaviour
is schematically shown in figure 15 where it is illustrated how the mixing of the wake
behind a propeller may result in the formation of an axial centre vortex with distinct
embedded tip vortices.
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Figure 15. Sketch of vorticity distribution in a meridional cross-section of the rotor wake
for the present model of a far wake with uniform distribution of hub vorticity.
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Figure 16. Comparison between measured and simulated azimuthally averaged velocity
distributions: (a) axial velocity profiles; (b) azimuthal velocity profiles; (c) azimuthal velocity
profiles computed by Joukowski’s model. – – –, velocity profiles induced by tip vortices without
hub vorticity; · · · · · ·, velocity profiles induced by hub vorticity; ——, velocity profiles induced
by tip vortices and hub vorticity; experimental data by Medici & Alfredsson (2004) at
cross-section from rotor plane: x/a = 2.8(�); 3.8(�); 4.8(�).

The new far-wake model outlined was inspired by the above-mentioned
visualizations. To validate the model, it is compared to the experimental data by
Medici & Alfredsson (2004) who measured velocity distributions at various cross-
sections in the wake of a two-bladed rotor in a wind tunnel. The parameters of the
vortex system were set as follows: N = 2, γ = −1, δ =1.05 and σ = 0.05; with the tip
vortices defined as multiple left-handed helical vortices. Thus, for the comparison,
we assume that the total circulation is zero (

∑
Γ = Γ0 + NΓ = 0) and that the core

size of the tip vortices corresponds to 5% of the wake radius. This is merely a
guess, which, however, has no visible influence on the final result. As we do not
know the actual loading, we assume, as depicted in figure 15, that the root vortex
has merged with the shed vorticity in the wake, forming a continuous distribution
of vorticity. This is modelled as a Rankine vortex of radial extent δ = 1.05. The
remaining parameters, i.e. the circulation of the tip vortices Γ and the pitch τ , were
finally determined by fitting the model to the experimental data. The comparison is
shown in figures 16(a) and 16(b) where azimuthally averaged velocity distributions
are compared at a cross-section corresponding to 3.8 rotor radii downstream from the
rotor plane. As seen in figure 16(a), the inclusion of a distributed centre vortex results
in an axial velocity distribution in very good agreement with measured data. The
values used for the comparison are Γ = −3 and τ = 0.28. The corresponding azimuthal
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Figure 17. Neutral stability curves (stable region above each curve) for equilibrium of multiple
helical vortices N = 2 (· · ·· · ·); 3 (– · – ·); 4 (– · · –); 5 (– – –) and 6 (——) in an assigned flow
with R-vorticity distribution and circulation Γ0 = −NΓ (γ = −1). (a) as a function of vortex
radius σ for δ = 1.05 and (b) as a function of the radius of the hub vorticity δ for σ = 0.05.

velocity distribution is shown in figure 16(b). Since the centre vortex is modelled by a
Rankine vortex the resulting azimuthal velocity profile is linear, corresponding to solid
body rotation in the wake and zero outside the wake. The comparison shows that
there is excellent agreement between the modelled behaviour and the measurements.
To illustrate the behaviour of a root vortex of zero extent (δ ≈ 0), corresponding to
the original model of Joukowski, one would obtain a vθ = const/r dependence, as
shown in figure 16(c). This is clearly in contradiction to the measured behaviour.

To derive more general stability properties we keep γ = −1 and vary σ , δ and
N . The outcome is shown in figure 17 which depicts curves of neutral stability,
τ = τ (σ, δ, N). In figure 17(a) curves for neutral stability, τ = τ (σ ), for δ = 1.05 and
at different numbers of blades are shown, N = 2, 3, ..., 6, and in figure 17(b) stability
curves, τ = τ (δ), are shown for σ =0.05. From the figures it can be concluded that
an increase in the core radius of the hub vortex leads to loss of stability, whereas
an increase in the size of the tip vortices leads to a more stable vortex system. A
comparison with the measured data of Medici & Alfredsson (2004) shows that the
best fit is found for τ = 0.28. Since the considered rotor is two-bladed (N = 2), in
accordance with the experimental data, we find that the tip vortices in this case form
a stable system. The actual core size of the tip vortices and the size of the hub vortex
will of course depend on the loading on the blades.

5. Conclusion
The classical problem of the stability of multiple helical vortices has been generalized

to include vortices embedded in an assigned flow field. This vortex system, which is an
extension of the model of Joukowski (1912), consists of helical tip vortices embedded
in a helical vortex field formed by the trailing vortex sheet of the blades and the root
vortices. In contrast to the model of Joukowski, the new model explains the existence
of stable tip vortices.

Analytical solutions of the stability problem have been derived for three different
assigned flows, consisting of axisymmetric helical vortices with uniform-, polynomial-
and Gaussian-distributions of axial vorticity. The models show that the stability of
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helical vortices embedded in an assigned flow depends strongly on the radial extent
of the assigned vorticity field. New regions of stability were found for multiple helical
vortices subject to small pitch values.

Comparison with experiments (Medici & Alfredsson 2004) shows that the
considered vortex model gives an excellent representation of the far wake behind a
wind turbine. The vortex model is used as the basic flow model for predicting stability
boundaries of far wakes behind multi-bladed rotors. As an intermediate result of the
analysis it is demonstrated that representing the far wake by N tip helical vortices and
a slender root vortex results in unconditionally unstable flow behaviour. However,
introducing an assigned vorticity distribution that corresponds to the measurements
stabilizes the tip vortices and explains the existence of experimentally observed stable
wake structures.

The work was supported by the Danish Energy Agency under the project “Dynamic
wake modeling” (grant 33030-0004), Danish Research Agency (grant 2104-04-0005)
and the Russian Foundation for Basic Research under grant 04-01-00124. The authors
thank David Medici for providing the experimental data.
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